Pre-processing: Difference between revisions

From MT Talks
Jump to navigation Jump to search
No edit summary
Line 41: Line 41:


[http://www.decodeunicode.org/ Decode Unicode] is a useful webpage with information on Unicode characters.
[http://www.decodeunicode.org/ Decode Unicode] is a useful webpage with information on Unicode characters.
Often, a file [http://en.wikipedia.org/wiki/Hex_dump hexdump] is the most useful diagnostic tool. E.g. the Linux command '''xxd''' provides the necessary functionality.


=== Script/Characters ===
=== Script/Characters ===
Line 69: Line 71:
  ''':set bomb'''
  ''':set bomb'''


Hexdump: xxd
== Tokenization ==
 
 
==
 
== Negation in English-Czech Translation ==
 
[[File:nemam_kocku.png|thumb|300px|'''Example of an error during phrase extraction.''' The system learns a translation pair ''"nemám" = "I have"'' which has the opposite meaning.]]
 
In some cases, the statistical approach leads to '''systematic errors'''. The picture illustrates a common issue with negation -- in many languages (such as Czech), negation is expressed by a prefix ("''ne''" in this case). Moreover, Czech uses double negatives -- the sentence:
 
: ''Nemám žádnou kočku.''
 
Its English translation is:
 
: ''I have no cat.''
 
Although word by word, the Czech sentence actually says:
 
: ''I_do_not_have no cat.''
 
Most statistical MT systems are based on word alignment, i.e. finding which words correspond to each other. From this sentence pair, the automatic procedure learns a wrong translation rule:
 
: ''I have''=''nemám''
 
Whenever this rule is applied, the meaning of the translation is completely reversed.
 
== Named Entities ==
 
Other examples of notorious errors include named entities, such as:
 
: ''Jan Novák potkal Karla Poláka. -> John Smith met Charles Pole.''
 
The name ''Novák'' is sometimes translated as ''Smith'' as both are examples of very common surnames in the respective language.
 
== Inadequate Modeling of Semantic Roles ==
 
[[File:pes-kocka-mys.png|thumb|500px|'''Example of a system's failure to translate semantic roles.''' Screenshot of Google Translate producing identical translation of radically different sentences.]]
 
There is also a disconnect when translating between a morphologically poor and a morphologically rich language. While the first tend to express argument roles using '''word order''' (think English), the latter often use '''inflectional affixes'''. A statistical system which simply learn correspondences between words and short phrases then fails to capture the difference in meaning:
 
: ''Pes dává kočce myš.''    (the dog gives the cat a mouse)
 
: ''Psovi dává myš kočku.''  (to the dog, the mouse gives a cat)
 
: ''Psovi dává kočka myš.''  (to the dog, the cat gives a mouse)
 
All of these examples are translated identically by [https://translate.google.com Google Translate] at the moment, even though their meanings are clearly radically different.
 
== Numerals ==
 
Translation dictionaries of statistical MT systems are full of potential errors in numbers. Consider the possible translations of the number ''1.96'' according to our English-Czech translation system:
 
1.96 ||| , 96 1 ,
1.96 ||| , 96 1
1.96 ||| , 96
1.96 ||| 1,96
1.96 ||| 1.96
1.96 ||| 96 1 ,
1.96 ||| 96 1
1.96 ||| 96
 
While the wrong translations may be improbable according to the model, they can still appear in the final translation in some situations.
 
Moreover, MT systems will often translate the actual number correctly but confuse the units, e.g.:
 
: ''40 miles -> 40 km''
 
On the other hand, such situations can lead to peculiar translations of numbers observed in parallel data:
 
40  ||| 24.8548
(km)    (miles)

Revision as of 14:33, 12 January 2015

Lecture 3: Pre-processing
Lecture video: web TODO
Youtube

{{#ev:youtube|ucSv4S4sCjs|800|center}}

Overall, the task of data pre-processing is to drop any distinctions that are not important for the output.

Inspecting Text Data

Text Encoding

Two texts that look the same might not be identical. MT systems do not see the strings as humans do but instead, they work with the actual byte representation. Therefore, data pre-processing is a very important step in system development.

Unicode includes a number of special characters which can complicate text processing for an MT system developer. The following table contains examples of some of the more devious characters:

Code Name Description
U+200B Zero-width space An invisible space.
U+200E Left-to-right mark An invisible character used in texts with mixed scripts (e.g. Latin and Arabic) to indicate reading direction.
U+2028 Line separator A Unicode newline which is often not interpreted by text editors (and can be invisible).
U+2029 Paragraph separator Separates paragraphs, implies a new line (also often ignored).

Decode Unicode is a useful webpage with information on Unicode characters.

Often, a file hexdump is the most useful diagnostic tool. E.g. the Linux command xxd provides the necessary functionality.

Script/Characters

Unicode often provides many ways how to write a single character. For example, the letter "a" might be written with Latin or Cyrillic script.

Aside from seemingly identical, but differently encoded characters, problems commonly seen in data include:

  • Confusion of 0 (zero) and O (capital letter)
  • Inconsistent letter case: English word I written in lowercase etc. (notorious e.g. in movie subtitles)
  • Various systematic mis-spellings -- all of these variants of "I'll" (I will) were observed in movie subtitles: i'll Ill l'll 1'll 1'11
  • Different symbols for various punctuation (quotes, dashes, apostrophe etc.)

VIM tips

A good text editor is an essential pre-requisite for successful inspection of text data and the implementation of suitable pre-processing. We provide several random tips for the VIM editor:

Set file encoding to UTF-8:

:set encoding=utf8

Show the code of character under cursor:

ga

Set BOM (byte-order mark) for current file:

:set bomb

Tokenization